CHEMICAL ALTERNATIVES TO MB FOR STRAWBERRY NURSERIES IN SPAIN. 2002 RESULTS.

- P. Melgarejo (1), A. Martínez-Treceño (2), A. de Cal (1), T. Salto (1), M.L. Martínez-Beringola (1), J.M. García-Baudín (2), I. Santín (2), E. Bardón (3), J. Palacios (4), M. Becerril (5), J.J. Medina (6) and J.M. López-Aranda (6)*
- (1) Departamento Protección Vegetal, INIA, Madrid, Spain
- (2) OEVV. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
- (3) Viveros California SL. Geria, Valladolid, Spain
- (4) Viveros Rio Eresma SA. Navalmanzano, Segovia, Spain
- (5) DGPA-CAG. Junta Castilla-León, Valladolid, Spain
- (6) IFAP. CIFAs Las Torres/Churriana-Málaga, CAP-Junta de Andalucía, Spain

Funding from the National project INIA SC 97-130 on alternatives to Methyl Bromide (MB) has allowed five years of work on chemical alternatives for highelevation strawberry nurseries in Spain. Results (1998-2001) were presented in MBAO Conference and elsewhere (De Cal et al., 2002; López-Aranda, 1999; López-Aranda et al., 2002; Melgarejo et al., 2001). Up to 2001, high-elevation nursery peculiarities such as high geographical mobility, previous crops, application of fumigant treatments in winter, etc, have caused different patterns on each year and location (inconsistent results). The trials reported herein, corresponding to 2002, are the last of a series started in 1998. These trials were carried out in two nurseries: Viveros California Inc. (Vinaderos-3, Avila) and Viveros Rio Eresma Inc. (Navalmanzano-5, Segovia) in Castile-Leon (Northern-Central part of Spain), named as locations 1 and 2, respectively. The experimental design on each nursery was in complete randomized blocks with 3 large replications of 275 m² each and 10 fumigant treatments (Table 1). New alternatives, incorporated for first time in Spain on the 2002 nursery experiments, were MB-Pic (33-67) broadcast shank-applied under transparent VIF film, to minimize the use and emissions of MB, and DMDS (Dimethyldisulfide) broadcast shank-applied under transparent PE, a very interesting and promising European solution due to its zero ODP and very low toxicity profile. Preceding crops were cereals and sugar beet in location 1 and vegetables (carrots, asparagus) in location 2. Fumigation dates were April 3-4, (1st longitudinal pass of applications) and April 16 (2nd longitudinal pass of applications), 2002. Table 2 reports a summary of the climatic conditions during fumigant applications. Cv. 'Camarosa' motherplants from Californian nurseries were planted in May 7 (location 2) and May 9-11 (location 1), 2002. Commercial daughter runner plants were harvested in October 2 (location 2) and October 8 (location 1), 2002. Soil samples from each nursery were evaluated before (March 25) and after (May 5) treatments in selective media. Total colony forming units per gram of dry soil (cfu/g) of soilborne fungi Fusarium, Phytophthora, Pythium, Rhizoctonia, and Verticillium were estimated in each replication. A large sample of 600 mother plants from each field experiment was examined before planting. Four times (July 2, July 27, August 28, September 25) during the strawberry growing period (initial, medium and full running activity, and just before digging), 20 runner plants were randomly chosen from the central row in each replication and analyzed to calculate the incidence of diseased plants (%) for each treatment. Weeding was recorded by two different ways: a) cost of weed elimination in location 1 (Vinaderos-3) (Table 3); b) fresh and dry weight of weeds eliminated from a sample of 5 m length of row per replication and location (Table 4).

Total fungal population was homogeneous in both locations before fumigant treatments, ranging from 2.3 x 10⁴ to 8.0 x 10⁴ cfu/g of dry soil in Vinaderos-3, and from 3.8 x 10⁴ to 9.7 x 10⁴ cfu/g of dry soil in Navalmanzano-5. Presence of Penicillium spp. was predominant; genera Alternaria, Fusarium, Cladosporium, Trichoderma, Rhizoctonia and Morteriella were also present. Initial population of Verticillium sp. was 10³ and 10² cfu/g of dry soil and population of Phytophthora cactorum was 10² cfu/g of dry soil in Vinaderos-3 and Navalmanzano-5, respectively. Initial total soil-borne fungal population was reduced significantly after fumigant treatments, with the exception of Control and DMDS treatments in Vinaderos-3. The largest reduction was achieved by Dazomet treatment. However, fungal population reduction after treatments was not significant in Navalmanzano-5. Before planting, mother plant samples from Californian nurseries showed a good sanitary status, although 20.5% of plants from Vinaderos-3 plants showed frost damage (probably due to cold-stored shipment from California); 3.9% and 2.8% of mother plants presented symptoms of disease caused by *Phytophthora cactorum* in Vinaderos-3 and Navalmanzano-5, respectively. In relation with the incidence of diseased plants (%) during the growing season, small problems were detected (5% of runner plants in both locations with symptoms of disease caused by *Phytophthora cactorum* symptoms) only in Control replications. The most important problem detected was of abiotic origin, a strong storm occurred in Navalmanzano-5 at mid-August caused important flooding in all treatments with subsequent problems of plant stress. Results regarding fresh commercial daughter plants harvested are presented in Table 5. In general, the number of plants harvested in Navalmanzano-5 was much lower than in Vinaderos-3, probably due to stress suffered by the plants as a result of the flooding at mid-August. Only after MB (40) treatment, standard in strawberry nurseries, yields in both locations were similar. Yields obtained with other MB solutions, MB(20)VIF and MB (33/67)VIF were inconsistent. In spite of the poor weed control observed with Vapam (Table 4), this treatment showed better results than in former experiments and years. Telopic and Telopic VIF results in Navalmanzano-5 were poorer than expected. Dazomet and DMDS treatments need to be implemented by means of VIF film utilization and/or combinations with chloropicrin. As in previous years, the two-location 2002 experiments showed that agronomic results are not consistent enough. For this reason, application for critical use exemption for the Spanish high-elevation strawberry nurseries has been presented and recommended by MBTOC in 2003.

References

De Cal <u>et al.</u> **2002.** The importance of disease-free plants produced in strawberry nurseries in Spain. Proc. International Conference on Alternatives to Methyl Bromide. The Remaining Challenges. Seville 5-8 March: 44-47.

López-Aranda, J.M. 1999. The Spanish National Project on alternatives to MB: The case of strawberry. Proc. 1999 Annual International Research Conference on Methyl Bromide alternatives and Emissions reductions. November 1-4, San Diego, USA. Pp.8/1-8/4.

López-Aranda et al. 2002. Alternatives to Methyl Bromide for use in strawberry production and nurseries in Spain. Proc. International Conference on Alternatives to Methyl Bromide. The Remaining Challenges. Seville 5-8 March: 38-42.

Melgarejo et al. 2001. Three years of results on chemical alternatives to Methyl Bromide for strawberry nurseries in Spain. Proc. 2001 Annual International Conference on Methyl Bromide Alternatives and Emissions Reductions. November 5-9, San Diego, USA. Pp.93/1-93/4.

<u>Table 1. MB Alternatives 2002. High-e levation nursery trials in Castile-Leon.</u>

Treatments	Description				
Control	Check without any kind of soil disinfestation				
MB(40)	MB-Pic (50-50), 40 g/m ² broadcast shank-applied under transp. PE				
MB(20)VIF	MB-Pic (50-50), 20 g/m ² broadcast shank-applied under transp. VIF				
MB(33/67)VIF	MB-Pic (33-67), 20 g/m ² broadcast shank-applied under transp. VIF				
Dazomet	Dazomet, 50 g/m² broadcast, rotovator incorporation and sealed under transp. PE				
Telopic	1,3D+Pic (61-35), 40 cc/m ² broadcast shank-applied under transp. PE				
Telopic VIF	1,3D+Pic (61-35), 20 cc/m ² broadcast shank-applied under transp. VIF				
Vapam	Metam Sodium, 125 cc/m ² broadcast shank-applied under transp. PE				
MetamK	Metam Potassium, 160 cc/m ² broadcast shank-applied under transp. PE				
DMDS	DMDS, 80g/m ² broadcast shank applied under transp. PE				

Table 2.- Climatic conditions during fumigant treatment applications. Year 2002.

Location	1 st pass	2 nd pass	T soil	T air	Wind	Soil	T soil (°C)
			(°C)	(°C)		humidity	under
							plastic
Vinaderos-3	Apr. 04	-	9.6	7.0	Strong	Very high	nd
Navalmanzano-5	Apr. 03	-	9.0	5.0	Strong	Very high	nd
		_					
Vinaderos-3	Apr. 11	Apr. 11 2 nd pass cancelled because 4°C in soil and 1°C in air (noon)					
Vinaderos-3	-	Apr. 16	9.3	10.1	Weak	Normal	12.5
		(morning)				(field capac.)	
Navalmanzano-5	-	Apr. 16	16.5	19.0	Weak	Dry	24.6
		(afternoon)					

Table 3.- Weeding. Estimated cost per ha in Location 1 (Vinaderos-3) (Euros/ha).

Treatments	Mother-plant	1 st broadcast	2 nd broadcast	3 rd broadcast	Total cost
	rows weeding	weeding	weeding	weeding	(€ha)
	June 8	July 5	August 6	September 9	
Control	240	870	320	9,350	10,780
MB(40)	240	90	320	420	1,070
MB(20)VIF	240	70	320	420	1,050
MB(33/67)VIF	240	80	320	420	1,060
Dazomet	240	80	320	420	1,060
Telopic	240	70	320	420	1,050
Telopic VIF	240	80	320	420	1,060
Vapam	240	140	320	420	1,120
MetamK	240	100	320	420	1,080
DMDS	240	380	320	7,060	8,000

Table 4.- Weeding. Fresh and dry weight of weeds¹.

Treatments	1 st sampling: July 4, 2002				2 nd sampling: August 13, 2002			
	Vinade	eros-3	Navalmanzano-5		Vinaderos-3		Navalmanzano-5	
	(loc.1)		(loc. 2)		(loc.1)		(loc. 2)	
	Fresh	Dry	Fresh	Dry	Fresh	Dry	Fresh	Dry
Control	2951	418	2850	669	30241 a	7155 a	3637 ab	979 a
MB(40)	0	0	13	7	3705 b	204 b	2210 abc	640 ab
MB(20)VIF	13	5	21	1	0 b	0 b	782 bc	301 ab
MB(33/67)VIF	37	12	2	0	0 b	0 b	227 с	28 b
Dazomet	0	0	28	6	0 b	0 b	2127 c	586 ab
Telopic	1	0	33	4	2358 b	672 b	106 c	21 b
Telopic VIF	65	30	1	0	217 b	30 b	147 c	23 b
Vapam	3124	484	25	7	14930 ab	3263 ab	238 с	102 b
MetamK	375	55	56	11	1263 b	273 b	91 c	57 b
DMDS	758	108	593	110	23790 a	5443 a	3950 a	570 ab
					P = 0.05		•	•
¹ Sample: g per replication in a 5 m length of rows								

<u>Table 5.- Harvested commercial daughter runner plants.</u>

Treatments	Vinaderos-3	Navalmanzano-5	Two locations	
	(loc.1)	(loc. 2)	average	
MB(40)	556667 ab	566667 a	561667 a	
MB(20)VIF	636667 a	430000 ab	533333 ab	
Vapam	546667 abc	493333 ab	520000 abc	
MB(33/67)VIF	566667 ab	423333 ab	495000 abc	
Telopic	616667 ab	370000 b	493333 abc	
Telopic VIF	546667 abc	420000 ab	483333 abcd	
MetamK	530000 abc	370000 b	450000 bcd	
DMDS	473333 bcd	396667 b	435000 cd	
Dazomet	420000 cd	366667 b	393333 d	
Control	380000 d	193333 с	286667 e	
P = 0.05				