Dimethyl Disulfide (DMDS)

A Methyl-Bromide Replacement Candidate

Current Important Industrial Uses of DMDS

- Important agent used in hydrodesulfurisation processes in the petrochemical industry
- · Coke inhibiting agent used in ethylene furnaces
- Used as an FDA registered food additive
- ARKEMA, a world leading producer of DMDS
 DMDS Atmospheric Effects
 DMDS physical-chemical properties

Molecular formula: C₂S₂H₆ Molecular weight: 94.201 Appearance: yellow liquid Odor: garlic-like smell

Boiling point: 109.8° C Flash point: 16° C (TCC)

Henry's law constant: 1.21 E-3 (20° C) Octanol/water partition: log Pow 1.77 Vapor pressure: 28.7 mm Hg (25° C) Water solubility: 3 g/L (25° C)

DMDS: Naturally Occurring in the Environment DMDS Residues in the Environment: Biological Sources

in Procaryotes

- bacteria (Pseudomonas fluorescens, Proteus vulgaris, Sarcina lutea)
- fungi (Rhizopus nigricans, Aspergillus oryzae, Fusarium culmorum)
- algae (blue-green, green)

in Plants

- crops (alfalfa, brussels sprouts, cabbage, cassava, cauliflower, cocoa, filberts, garlic, onion, pea, peanut, potato, rutabaga, tea, tomato)
- aquatic plants
- terrestrial plants (oak, pine)

in Animals

• humans (expired air, urine), cattle (milk, manure), poultry/ sheep/ swine (manure), shellfish (oyster meat)

DMDS Residues in the Environment:

Anthropogenic Sources

in Food Processed Commodities

• coffee, bread, fish processing, whiskey, beer, water treatment

in Substances from Industrial Processes

• previously described industrial uses, sulfur dioxide scrubbing, wood pulping, gasoline engine exhaust, food refuse, starch manufacturing, pesticides¹

^{1/} terminal residues of acephate and methamidophos In *Brassicacea* from thiomethyl glucosinolates

From S-methyl-cysteine sulfoxide in crucifers and Allium spp.

DMDS Formation from Natural Processes

Methionine Degradation Pathway

DMDS Formation from Natural Processes

Dimethylsulfoniopropianate (DMSP) Degradation Pathway DMDS Formation from Natural Processes Biogenic Atmospheric Sulfur Cycle

DMDS Natural Background Concentrations

- Anthropogenic¹
 - Wastewater effluent (45 μg/l)
- Biological¹
 - Human expired air: max. 0.6 µg/hr)
 - Human expired air: max. 7ng/l)
 - Poultry manure: 85 μg/kg

DMDS Efficacy

- Effective against
 - Nematodes (e.g.-Root-knot, Cyst?)
 - Soil pathogens (e.g.-Rhizoctonia, Sclerotinia, Verticillium?)
 - •Weed species (e.g.-Purple Nutsedge, others)
- Efficacy influenced by
 - Dosage applied
 - Product combinations
 - Barrier permeability

DMDS Registration

- Registration submission on schedule for
 - 1st quarter, 2007

DMDS: Summary

- DMDS is a ubiquitous, simple, and natural product, being associated with such processes as methionine catabolism and dimethylsulfoniopropianate degradation.
- It is also key component of the biogenic atmospheric sulfur cycle.
- DMDS is registered with FDA as a food additive.
- As with any fumigant product, the development of appropriate

^{1/} low levels are maintained due to flux

commercial uses to maximize efficacy and ensure operator and bystander exposure are required and are in progress.