STRAWBERRY NURSERIES IN SPAIN: ALTERNATIVES TO MB, 2007 RESULTS.

D. García-Sinovas (1), E. García-Méndez (1), M.A. Andrade (1), M. Becerril (1), A. De Cal (2), P. Melgarejo (2), T. Salto (2), M.L. Martínez-Beringola (2), C. Redondo (2), A. Martínez-Treceño (3), J.J. Medina (4), C. Soria (4), and J.M. López-Aranda (4)*

- (1) Instituto Tecnológico Agrario de Castilla y León (ITACyL)/Consejería de Agricultura y Ganadería. Junta de Castilla y León, 47071 Valladolid, Spain
- (2) Departamento de Protección Vegetal. SGIT-INIA, 28040 Madrid, Spain
- (3) OEVV. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
- (4) Centros IFAPA Las Torres-Tomegil & Churriana, CAP-Junta de Andalucía, 29140 Churriana, Málaga, Spain

The Spain's Methyl Bromide (MB) Alternatives Project (INIA) has allowed ten years of work for high-elevation strawberry nurseries in Spain. The activities reported herein, corresponding to 2007 (named experiments), were carried out in two nurseries: Viveros California Inc. (Tordesillas, Valladolid) and Viveros Rio Eresma Inc. (Navalmanzano, Segovia) in Castilla-Leon (Northern-Central part of Spain). The experimental design on each nursery was a 9 fumigant treatment complete randomized blocks with 4 large replications of 137.5 m² (50 x 2.75 m) each. All treatments were broadcast applied and are shown in Table 1. Summaries of 2003 to 2006 results were presented in MBAO International Conference (see MBAO web site www.mbao.org). In general, the alternative treatments incorporated on 2007 experiments were similar to those applied on 2003 to 2008. The new treatments incorporated on 2007 to the program were: Furfural (MultiguardTM Protect) and metam sodium but applied by modern Rotary Spader implement. Preceding crops were leeks and sugar beet in both locations. Fumigation dates were March 27-28, 2007. Cv. 'Camarosa' mother-plants from Californian nurseries were planted during last week of April, 2007. Commercial daughter runner plants were estimated on September 26, 2007.

Beside these experiments, similarly to 2003-2006 period, a field demonstrations program has been carried out by this Spain's MB Alternatives Project (INIA) in two different locations (named demonstrations): Viveros Grufresa Inc. (Cabezas de Alambre, Avila) and Viveros Herol Inc. (Nava de la Asunción, Segovia). Field demonstrations are presented in Table 2. Preceding crops were leeks in Nava de la Asunción and cereals in Cabezas de Alambre. Fumigation and planting dates were similar to those utilized for experiments; but in this case, commercial runner plants were machine-harvested from the whole demonstration field, and trained crews sorted and counted the total number of marketable plants in October 15 (Nava de la Asunción) and October 22 (Cabezas de Alambre).

Soil samples from each field experiment were evaluated before (March, 22, 2007) and after (April, 24, 2007) soil fumigant treatments. Total colony forming units per gram of dry soil (CFU/g) of *Fusarium, Phytophthora, Pythium, Rhizoctonia*, and *Verticillium* were estimated in each replication. Three times (July 24, August 28 and October 9) during the growing period (initial, medium and full running activity), 20 runner plants were randomly chosen in each replication and analyzed to calculate the incidence of diseased plants (%) per treatment. Results on soil borne fungi control and disease incidence (%) in experiments will be discussed.

Areas of 3.5 m² were left unweeded in each plot of experiments throughout the duration of each study. Weeds were sampled and removed on five dates, from July until September. At each sample date, weed species present, total weed density and total fresh weight were measured for each treatment. In the case of demonstration fields, two areas of 15 m² per demonstration were left unweeded. The most common weeds in the experimental plot at Tordesillas (Valladolid) were *Echinochoa crusgalli*, nightshades (*Solanum spp.*) and common purslane (*Portulaca oleracea*), while in Navalmanzano (Segovia) location, were common lambsquarters (*Chenopodium album*), nightshades and pigweeds (*Amaranthus spp.*). In the experimental fields, treatments that provided significantly better control of the weeds were MB (50-50), Pic:DD, MidasTM and TelopicTM, while in demonstrative fields, better results were obtained by MB (50-50) and TelopicTM. Tables 3 and 4, show the fumigation treatments effects on weed density. Variance analysis for both type of trials shows significant differences between treatments, also for the interaction treatment x locality for the total number of weeds.

Results regarding fresh commercial plants harvested (field experiments) are in Table 5. As in previous years, the 2007 experiments showed that agronomic results are not consistent enough. Furthermore, field demonstrations showed yield inconsistency (Table 6). Results on strawberry plant production will be discussed. So far, some inconsistency on weed control and yield stability remains for chemical alternatives to MB in strawberry nurseries. Next 2009 season, critical uses for strawberry nurseries in EU will be over.

ACKNOWLEDGEMENTS

This research was financed by Instituto Tecnologico Agrario de Castilla y León-ITACyL (Spain). The authors gratefully acknowledge the collaboration of Viveros California S.L., Viveros Río Eresma S.L., Viveros Herol, S.L., Grufesa S.A.T., Agrofresas S.A. and Imants B.V. The authors thank to United Nations for awarding and recognizing the extraordinary contribution of the Spain's Methyl Bromide Alternatives Project (INIA) to make the Montreal Protocol MB phaseout goals a reality, (September 16, 2007 at the 20th anniversary of Montreal Protocol). We gratefully acknowledge INIA authorities and the EU Project (Sixth Framework Programme) Alterbromide, contract n° 022660, for their support.

Table 1. MB Alternatives 2007. Nursery field experiments.

Treatments	Description	Rate		
Control PE	Untreated	-		
MB:Pic (50/50) VIF	Methyl Bromide + choloropicrin (50:50)	30 g/m^2		
MI:Pic (50:50) VIF. Midas TM	Methyl iodide+chloropicrin (50:50).	30 g/m^2		
DMDS:Pic VIF	Dimethyl disulfide+ chloropicrin	$40+15 \text{ g/m}^2$		
Telopic™ VIF	1,3-dichloropropene+ chloropicrin	30 g/m^2		
MS:Biofungicide ¹ VIF	Metam sodium+biofungicide	50 g/m^2		
Furfural VIF.	Furan-2-carboxaldehyde	40 g/m^2		
Multiguard™ Protect				
Pic:DD VIF	Chloropicrin+1,3-dichloropropene	$18+12 \text{ g/m}^2$		
MS applied with Rotary Spader	Metam sodium	70 g/m^2		
¹ Experimental biofungicide developed by SGIT-INIA team (before planting mother plant				

¹Experimental biofungicide developed by SGIT-INIA team (before planting mother plant roots were submerged in a suspension of *Penicillium oxalicum*, 10⁷ conidia/ml)

Table 2. MB Alternatives 2007. Nursery field demonstrations.

Treatments	Demo surface (m ²)
MB:Pic (50:50) 30 g/m ² VIF	1,000
Pic alone 35 g/m ² VIF	1,000
Telopic 35 g/m ² VIF	1,000
MS applied with Rotary Spader 70 g/m ²	1,000

Table 3. Weed density in nursery field experiments. Average comparison for the total number of plants in five samplings for each location.

Treatments	Tordesillas	Navalmanzano	Two locations
	(Va.)	(Seg.)	average
MB:Pic (50/50) VIF	9.47 b ¹	2.00 c	5.61 b
Pic:DD VIF	11.07 b	1.56 c	6.16 b
MI:Pic (50:50) VIF	14.80 b	0.62 c	7.48 b
Telopic™ VIF	14.47 b	1.38 c	7.71 b
MS applied with Rotary Spader	13.60 b	9.81 cb	11.65 b
DMDS:Pic VIF	27.50 b	4.75 c	15.37 b
MS:Biofungicide VIF	42.47 b	0.94 c	20.94 b
Control PE	209.78 ba	34.17 ba	116.12 ba
Furfural VIF	312.71 a	38.69 a	166.57 a

¹Means sharing the same letters within a column are not significantly different according to the Duncan's multiple range test $(P \le 0.05)$

<u>Table 4. Weed density in nursery field demonstrations. Average comparison for the total number of plants in five samplings for each location.</u>

Treatments	Cabezas	Nava Asunción	Two locations
	Alambre (Av.)	(Seg.)	average
MB:Pic (50:50) 30 g/m ² VIF	$0.83 a^{1}$	6.25 b	3,93 b
Telopic 35 g/m ² VIF	0.67 a	3.62 b	2,36 b
MS applied with Rotary Spader 70	15.17 a	12.88 b	13,86 ba
g/m^2			
Pic alone 35 g/m ² VIF	6.00 a	45.75 a	28,71 a
Tage 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		°C . 1'

Means sharing the same letters within a column are not significantly different according to the Duncan's multiple range test $(P \le 0.05)$

<u>Table 5. Nursery field experiments. Total and relative marketable runner plant</u> production estimation.

Treatments	Tordesillas	Navalmanzano	Two locations average	
	(Va.)	(Seg.)		
	Plants/ha	Plants/ha	Plants/ha	Relative ¹
MB:Pic (50/50) VIF	465,000	575,000	520,000	100
Pic:DD VIF	457,500	505,000	481,250	92.5
Telopic™ VIF	402,500	527,500	465,000	89.4
MI:Pic(50/50) VIF	387,500	535,000	461,250	88.7
MS applied with	330,000	570,000	450,000	86.5
Rotary Spader				
DMDS:Pic VIF	362,500	465,000	413,750	79.6
MS:Biofungicide VIF	315,000	460,000	387,500	74.5
Furfural VIF	187,500	395,000	291,250	56.0
Control	170,000	377,500	273,750	52.6
¹ Relative plant production to standard MB:Pic (50/50) under VIF				

<u>Table 6. Nursery field demonstrations. Total and relative marketable runner plant machine-harvested production.</u>

Treatments	Cabezas	Nava Asunción	Two locations average	
	Alambre (Av.)	(Seg.)		
	Plants/ha	Plants/ha	Plants/ha	Relative ¹
MB:Pic (50:50) 30 g/m ² VIF	591,400	612,500	601,950	100
Pic alone 35 g/m ² VIF	302,800	301,000	301,900	50.2
MS applied with Rotary	360,000	298,000	329,000	54.7
Spader 70 g/m ²				
Telopic 35 g/m ² VIF	411,400	476,300	443,850	73.7
¹ Relative plant production to standard MB:Pic (50/50) under VIF				