TWO YEAR SUMMARY OF HOST PLANT RESISTANCE IN STRAWBERRY TO MACROPHOMINA CROWN ROT AND VERTICILLIUM WILT

Seyed Mojtaba Mansouripour*¹, Jonathan Winslow¹, Benjamin Gomez-Soto¹, Bo Liu² and Gerald Holmes¹

¹Strawberry Center and ²Bioresources and Agricultural Engineering Department at the California Polytechnic State University, One Grand Avenue, San Luis Obispo, CA 93407

Strawberry (*Fragaria* × *ananassa* Duch.) is an important crop for California and the United states. Soilborne diseases such as Verticillium wilt, caused by *Verticillium dahlia*e, and Macrophomina crown rot caused by *Macrophomina phaseolina* have become more important since the phase-out of methyl bromide (MB) which effectively controlled all soilborne diseases. Most of the currently popular commercial cultivars are susceptible to these pathogens. It is necessary to find a replacement for MB to prevent millions of dollars in yield loss each year. Finding sources of host plant resistance to these soilborne diseases is an efficient way to increase yields in the presence of soilborne pathogens.

We evaluated approximately 90 genotypes (30 cultivars and 60 elite breeding lines) for their susceptibility to *M. phaseolina* and *V. dahliae* in replicated field trials in 2017 and 2018. These genotypes came from six different breeding programs: University of California Davis, Driscoll's, Plant Sciences, Lassen Canyon, Planasa and University of Florida. Genotypes were planted in a randomized complete block design with four replications and 20 plants per replicate. The *V. dahliae* field was naturally infested by *V. dahliae* after decades of growing Verticillium wilt-susceptible crops such as lettuce and tomato. Soil concentration of *V. dahliae* was 20-25 CFU/g of soil. The *M. phaseolina* field was artificially infested with 5 g inoculum (microsclerotia grown in a corn-meal sand mixture). Plant mortality was recorded every two weeks. Although there were different genotypes used in both years, approximately 15 cultivars were common between years.

The results showed some level of resistance in both *M. phaseolina* and and *V. dahliae* trials in both years (Tables 1 and 2). The mortality data in 2017 and 2018 were recorded on 24 Jul 2017 and 25 Jul 2018 for the *M. phaseolina* trials and 18 Jul 2017 and 24 Jul 2018 for *V. dahliae* trials. For both pathogens, results were relatively consistent between years, especially for those cultivars at the extremes (i.e., very high or very low % mortality) (Tables 1 and 2).

Table 1. List of cultivars and the percent average mortality for Macrophomina crown rot in 2017 and 2018

	Average mortality (%) ^z	
Cultivar name	2017	2018
Osceola	$1 a^{y}$	17 ab
Manresa	3 ab	14 ab
Grenada	11 ab	27 cd
Laredo	17 abc	11 a
Amado	23 abc	25 cd
Petaluma	25 bc	21 cd
Big Sur	30 c	34 de
Del Rey	36 cd	40 de
Fronteras	40 cd	46 de
Celine	52 cd	35 de
Albion	52 cd	76 ef
Monterey	69 de	65 e
Sweet Ann	69 de	87 ef
Festival	81 f	89 ef
Ruby June	90 f	95 f

²Percent plant mortality on 24 Jul 2017 and 25 Jul 2018. ^yMeans in a column with the same letter are not significantly different (P = 0.05) per Fisher's protected least significant difference test.

 Table 2. List of cultivars and the average percent mortality for Verticillium wilt
in 2017 and 2018

	Average	Average mortality (%) ^z	
Cultivar name	2017	2018	
Marquis	3 a ^y	8 ab	
Petaluma	5 a	4 a	
Sweet Ann	14 ab	12 ab	
Fronteras	17 ab	11 ab	
Cabrillo	19 ab	13 ab	
Manresa	25 ab	5 a	
Monterey	26 ab	32 d	
Big Sur	31 bc	15 ab	
Amado	32 bc	8 ab	
Ruby June	35 bc	29 cd	
Del Rey	39 bc	16 ab	
Osceola	42 bc	19 bc	
Laredo	55 cd	32 d	
Festival	62 d	31 d	

²Percent plant mortality on 18 Jul 2017 and 24 Jul 2018. ^yMeans in a column with the same letter are not significantly different (P = 0.05) per Fisher's protected least significant difference test.